СПЕЦИАЛЬНОЕ ЗАДАНИЕ

Расчет сужающего устройства

Исходные данные:

Наибольший измеряемый массовый расход

Средний измеряемый массовый расход

Абсолютное давление воды перед сужающим устройством

Температура воды перед сужающим устройством

Материал трубопровода СТ20

Материал сужающего устройства 15Х12ВНМФ

Внутренний диаметр трубопровода, округленный по ГОСТу стандартного при температуре

Определение недостающих для расчета данных

Плотность воды при; определяем по приложению 8 :

Средний коэффициент линейного теплового расширения материала трубопровода ст.20 определяем по таблице 1 :

Определяем поправочный множитель на тепловое расширение материала трубопровода по формуле:

Kt = (1)

Определяем внутренний диаметр трубопровода по формуле:

Динамическая вязкость воды в рабочих условиях определяем по приложению 26 :

Выбор сужающего устройства и дифманометра

Тип сужающего устройства - диафрагма камерная ДКС 10-125, материал диафрагмы - 10 ХАНВМ2Т, сталь .

Тип и разновидность дифманометра - дифманометр мембранный.

Определение минимального перепада давления дифманометра

Верхний предел измерения дифманометра:

Определяем вспомогательную величину C по формуле:

Определяем номинальный перепад давления дифманометра по приложению 32 для m=0,2:

Определяем число Рейнольдса соответствующее верхнему пределу измерения дифманометра:

Определение параметров сужающего устройства

Наибольший предел давления на диафрагме:

Определяем вспомогательную величину (5)

Определяем коэффициент расхода по формуле:

Определяем вспомогательную величину по формуле:

Определяем относительное отклонение д1:

Т.к. д1<10%, то значения m1=0,2 и бy1=0,619 считаем окончательным.

Проверка ограничений числа Рейнольдса

Минимальное число Рейнольдса Re:

Определяем допустимое число Рейнольдса по приложению 5.1.1 :

Условие Re>Remin выполняется.

Средний коэффициент линейного теплового расширения материала сужающего устройства по таблице 1:

Поправочный множитель на тепловое расширение материала сужающего устройства K"t:

Кt= 1+16.10-6. (118-20) = 1,001568

Диаметр отверстия диафрагмы при температуре 20 0С:

Определяем диаметр отверстия диафрагмы при температуре 100 0С: (11) мм

Проверка расчета

Расход, соответствующий предельному перепаду давления:

ОПИСАНИЕ ПРАВИЛ ДИАФРАГМЫ ДКС10-125 МОНТАЖА ДИФМАНОМЕТРА САПФИР-22М-ДД

Монтаж сужающего устройства ДКС-10-125

Сужающие устройства должны монтироваться в предварительно установленных фланцах только после очистки и продувки технологических трубопроводов (желательно перед их опрессовкой). Установка сужающих устройств должна производиться так, чтобы в рабочем состоянии обозначения на их корпусах были доступны для осмотра.

Сужающее устройство можно устанавливать только на прямом участке трубопровода независимо от положения этого участка в пространстве. При выборе места установки сужающего устройства необходимо иметь в виду, что измеряемый поток в этом месте должен целиком заполнить сечение трубопровода.

К основным конструктивным факторам трубопровода, влияющим на погрешности измерения расхода, относятся: отклонение действительных диаметров участков от расчетных значений, овальность трубопроводов, дефекты прямых участков трубопровода, длина прямых участков до и после сужающего устройства.

Действительный внутренний диаметр участка трубопровода перед сужающим устройством определяют как среднее арифметическое результатов измерений в двух поперечных сечениях: непосредственно у сужающего устройства и на расстоянии, 2D20 от него, причем в каждом из сечений не менее чем в четырех диаметральных направлениях. Результаты отдельных измерений не должны отличаться от среднего значения более чем на 0,3 %. Внутренний диаметр участка трубопровода на длине 2D20 за сужающим устройством может отличаться от внутреннего диаметра участка трубопровода перед сужающим устройством не более чем на ±2%.Прямой участок трубопровода перед сужающим устройством должен иметь круглое сечение на длине не менее 2D20. Результаты отдельных измерений диаметра на этой длине в любых различных плоскостях не должны отличаться более чем на 0,3% от среднего диаметра. На внутренней поверхности участка трубопровода длиной 2D20 перед сужающим устройством и за ним не должно быть никаких уступов, а также заметных невооруженным глазом наростов и неровностей от заклепок, сварных швов и т. п. Допускают уступ перед сужающим устройством в месте стыка труб, если h100%/D ? 0,3%, где h - высота трубопровода, a D - его диаметр.

Большая высота указывает на непригодность данного участка трубопровода.

Допустимая высота уступа на прямом участке трубопровода за сужающим устройством может быть в 3 раза больше указанных выше для измерительного участка перед сужающим устройством.

Сужающие устройства необходимо устанавливать на прямых участках трубопроводов, не имеющих непосредственно у сужающего устройства местных сопротивлений (колен, угольников, задвижек, вентилей, конических вставок и т.п.). Как указывалось выше, одним из важнейших факторов, влияющих на точность измерения расхода жидкостей. и газов, является правильно выбранные расстояния между местными сопротивлениями и сужающим устройством.

Существует ряд особенностей взаимного расположения местных сопротивления и сужающего устройства. Если расстояние между единичными коленами в трубопроводе превышает 15D20, то каждое колено считают одиночным. Если это расстояние меньше указанного, то данную группу коленьев считают одним местным сопротивлением. Это допущение справедливо при условии равенства или превышения радиусов кривизны коленьев диаметра трубопровода. Когда ближайшим к сужающему устройству оказывается такое местное сопротивление, как форкамера (емкость большого диаметра), то другие местные сопротивления, расположенные до этой емкости, при выборе длины прямого участка трубопровода во внимание не принимают. При необходимости установить сокращенную длину прямого участка трубопровода перед сужающим устройством при любом типе предстоящих местных сопротивлений (кроме гильзы термометра) она не должна быть менее 10D20. Сокращение нормируемых длин прямых участков трубопровода недопустимо, когда на последнем расположено последовательно несколько сужающих устройств .

Расчетное задание.

Задание: Рассчитать диаметр отверстия диафрагмы, установленной на участке трубопровода, при котором максимальному перепаду давления Δр соответствовал бы максимальный расход Q м = 80 т/час. Рассчитать также величину безвозвратных потерь напора, соответствующую максимальному расходу

Исходные данные:

Диаметр трубопровода при нормальной температуре (20°С) D 20 = 200 мм;

Материал трубопровода Сталь 20;

Материал диафрагмы Сталь 1Х18Н9Т;

Давление перед диафрагмой р 1 = 100 кгс/см 2 ;

Температура пара t = 400 °С;

Перепад давления Δр = 0,4 кгс/см 2 ;

Диаметр трубопровода при рабочей температуре

где выбирается из таблицы 15.1 (С. Ф. Чистяков, Д. В. Радун Теплотехнические измерения и приборы) в зависимости от рабочей температуры и материала трубопровода.

D = 200 мм∙1,0052 = 201,04 мм

Определим плотность пара при р = 100 кгс/см 2 и t = 400°С из таблиц теплофизических свойств воды и водяного пара.

р = 100 кгс/см 2 = 9,8066 МПа

r = 36,9467 кг/м 3

Определим средний расход.

Известно, что для данного способа определения расхода

Тогда
т/ч

Определим произведение am из формулы (15-14) (С. Ф. Чистяков, Д. В. Радун Теплотехнические измерения и приборы):

,

где e - поправочный множитель, учитывающий сжимаемость среды. В первом приближении принимаем, что пар не сжимаем, тогда e = 1.

Δр = 0,4 кгс/см 2 = 39226,4 Па

Воспользуемся таблицей 15.3 (С. Ф. Чистяков, Д. В. Радун Теплотехнические измерения и приборы) для составления таблицы коэффициентов a и am для диаметра трубопровода D = 200 мм в зависимости от модуля диафрагмы m.

Вычисленное значение am соответствует значениям m, принадлежащим интервалу 0,5¸0,6.

При помощи линейной интерполяции определим точное значение m.

Определим e во втором приближении.

Поправочный множитель e зависит от модуля m, показателя адиабатического расширения, а также от отношения Δр ср /р 1 .

Определим отношение Δр ср /р 1 .

Из формулы (15-29)

Показатель адиабатического расширения определяем из таблицы 15.5 в зависимости от рабочей температуры пара.

При t = 400°С c = 1,29

Определим e по формуле:

Определяем am во втором приближении, поскольку разница между значениями e, полученными в первом и во втором приближении больше чем 0,0005

e 1 - e 2 = 1 – 0,99900 = 0,001 > 0,0005

где - коэффициент термического расширения материала диафрагмы, определяется из таблицы 15.1 в зависимости от материала диафрагмы и рабочей температуры.

мм

Величину безвозвратных потерь напора определим из таблицы 15.2 в зависимости от модуля m.

тогда р n = 0,412∙0,4 = 0,165 кгс/см 2

Домашние задачи.

Задача №1

Исходные данные:

t 1 = 100°C; t 2 = 50°C; t 0 = 0°C

Определить: E(t 1 , t 0); E(t 2 , t 0)

Е Fe-Cu (t, t 0) = E Pt-Fe (t, t 0) + E Pt-Cu (t, t 0)

Воспользуемся таблицей 4.1 из этого учебника для определения термо-ЭДС пар Pt – Fe, Pt – Cu при t 1 = 100°C, t 0 = 0°C.

Приводимые далее расчетные формулы (равно как и методы расчета) справедливы для любых сужающих устройств, и в том числе, для стандартных диафрагм и сопел, но, разумеется, числовые значения коэффициентов расхода  и поправочных множителей  на изменение плотности газа и пара будут различны для разных сужающих устройств.

Учитывая, что площадь круглого отверстия сужающего устройства F 0 = d 2 /4 и p = p 1 - p 2 , а также производя соответствующую подстановку в формулы расхода (1),(2), получим значения Q м и Q о в виде:

где p измеряются в паскалях.

В большинстве технических расчетов применяют не секундный, а часовой расход. Измерять же диаметр d удобнее в миллиметрах, а не метрах.

С учетом вышеизложенного получим следующие выражения для Q м (кг/ч) и Q о (м 3 /ч):

(3)

      1. Погрешности измерения расхода с помощью диафрагм и сопел

Уравнения расхода, например (3), содержат пять множителей , ,  1/2 , p 1/2 , d 2 , от погрешностей которых зависит погрешность измерения расхода Q м или Q о. Имеются в виду случайные погрешности перечисленных величин. Систематические погрешности должны быть устранены или же учтены соответствующими поправками. Если были бы известны средние квадратические случайные погрешности   ,   ,  d ,   ,   p , то на основании закона сложения средних погрешностей можно записать

В общем случае погрешность коэффициента расхода   надо определять по формуле (5):

В формуле (5) через   и обозначена исходная погрешность а, которой оценивается достоверность коэффициента .

где D- диаметр трубы;

d - диаметр диафрагмы;

m - относительная площадь сужающего устройства.

Согласно стандарту ИСО 5167 для диафрагм с угловым и фланцевыми отборами   и = 0,3 % при т < 0,36 и   и = 0,5% при т > 0,36. Для сопел   и = 0,4 % при т < 0,36 и   и = % при т > 0,36. В правилах РД 50-213-80 для сопел   и = 0,3 % при т  0,25 и   и = % при m > 0,25.

Если при определении т допущена погрешность из-за неточного измерения значений d и D , то возникает дополнительная погрешность   m коэффициента , которую можно определить, исходя из формул (6) и (7) и зная погрешности  d и  D .

(6)

(7)

откуда для диафрагм

(8)

и для сопел

(9)

Значения  d и  D зависят от точности измерения d и D. Максимальная погрешность измерения d находится в пределах от 0,02 до 0,1%. Соответственно d будет изменяться от 0,01 до 0,05%.

Погрешность измерения перепада давления p или, иначе говоря, погрешность дифманометра будет определяться разными формулами, которые зависят от того, отнесен ли класс точности S дифманометра (т. е. основная погрешность показаний прибора в процентах) к верхнему пределу измерения разности давлений S  p или же к верхнему пределу измерения расхода S Q Эти формулы имеют вид:

Согласно ГОСТ 18140-84 дифманометры, предназначенные для работы в комплекте с сужающими устройствами, имеют класс S Q отнесенный к верхнему пределу измерения расхода. Обычно S Q =(0,51,5)%. /1/

      1. Недостатки

Недостатком метода являются относительно большие погрешности (1- 2%), обусловленные демпфирующим действием сужающего устройства, нелинейной зависимостью между расходом и перепадом давлений, неравномерным распределением давления, износом сужающего устройства, изменением плотности вещества и др. Последняя причина особенно существенна при измерении расхода газа или пара.

Диафрагма (измерение расхода)

Схема установленной диафрагмы в кольцевой камере (которая в свою очередь вставлена в трубу). Принятые обозначения: 1. Диафрагма; 2. Кольцевая камера; 3. Прокладка; 4. Труба. Стрелки показывают направление жидкости/газа. Оттенками цвета выделено изменение давления.

где
= объёмный расход (at any cross-section), м³/с
= массовый расход (at any cross-section), кг/с
= коэффициент истечения, безразмерная величина
= коэффициент расхода, безразмерная величина
= площадь сечения трубы, м²
= площадь
= диаметр трубы, м
= диаметр отверстия в диафрагме, м
= соотношение диаметров трубы и отверстия в диафрагме, безразмерная величина
= скорость жидкости до диафрагмы, м/с
= скорость жидкости внутри диафрагмы, м/с
= давление жидкости до диафрагмы, Па (кг/(м·с²))
= давление жидкости после диафрагмы, Па (кг/(м·с²))
= плотность жидкости, кг/м³.

Течение газа через диафрагму

В основном, уравнение (2) применимо только для несжимаемых жидкостей. Но оно может быть модифицировано введением коэффициента расширения с целью учёта сжимаемости газов.

Равен 1.0 для несжимаемых жидкостей и может быть вычислен для газов.

Расчёт коэффициента расширения

Коэффициент расширения , который позволяет отследить изменение плотности идеального газа при изоэнтропийном процессе , может быть найден как:

Для значений менее чем 0.25, стремится к 0, что приводит к обращению последнего члена в 1. Таким образом, для большинства диафрагм справедливо выражение:

где
= коэффициент расширения, безразмерная величина
=
= отношение теплоёмкостей (), безразмерная величина.

Подставив уравнение (4) в выражение для массового расхода (3) получим:

Таким образом, конечное выражение для несжатого (т.е., дозвукового) потока идеального газа через диафрагму для значений β меньших, чем 0.25:

Помня что и (уравнение состояния реального газа с учётом фактора сжимаемости)

где
= отношение теплоёмкостей (), безразмерная величина
= массовый расход в произвольном сечении, кг/с
= расход реального газа до диафрагмы, м³/с
= расходный коэффициент диафрагмы, безразмерная величина
= площадь сечения отверстия в диафрагме, м²
=